
ARTICLE IN PRESS
0889-9746/$ - se

doi:10.1016/j.jfl

�Correspond
E-mail addr
Journal of Fluids and Structures 25 (2009) 1243–1257

www.elsevier.com/locate/jfs
Aeroelastic analysis of helicopter rotor blade in hover using an
efficient reduced-order aerodynamic model

H. Shahverdia,�, A.S. Nobarib, M. Behbahani-Nejadc, H. Haddadpourd

aDepartment of Mechanical and Aerospace Engineering, Islamic Azad University, Science and Research Branch, Tehran 14515-775, Iran
bAerospace Engineering Department & Center of Excellence in Computational Aerospace, Amir Kabir University of Technology,

Tehran 15875-4413, Iran
cMechanical Engineering Department, Shahid Chamran University of Ahvaz, Ahvaz 61355-148, Iran

dAerospace Engineering Department, Sharif University of Technology, Tehran 11365-8639, Iran

Received 12 July 2008; accepted 12 June 2009

Available online 31 August 2009
Abstract

This paper presents a coupled flap–lag–torsion aeroelastic stability analysis and response of a hingeless helicopter

blade in the hovering flight condition. The boundary element method based on the wake eigenvalues is used for the

prediction of unsteady airloads of the rotor blade. The aeroelastic equations of motion of the rotor blade are derived by

Galerkin’s method. To obtain the aeroelastic stability and response, the governing nonlinear equations of motion are

linearized about the nonlinear steady equilibrium positions using small perturbation theory. The equilibrium deflections

are calculated through the iterative Newton–Raphson method. Numerical results comprising steady equilibrium state

deflections, aeroelastic eigenvalues and time history response about these states for a two-bladed rotor are presented,

and some of them are compared with those obtained from a two-dimensional quasi-steady strip aerodynamic theory.

Also, the effect of the number of aerodynamic eigenmodes is investigated. The results show that the three-dimensional

aerodynamic formulation has considerable impact on the determination of both the equilibrium condition and lead-lag

instability.

r 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Determination of the aeroelastic stability of a hingeless blade is a complex aeroelastic problem due to the interaction

of unsteady aerodynamic, structure, and inertia forces and their nonlinear properties. Most of the recent studies on

blade aeroelastic stability emphasize one of the disciplines and assume some simplification in the others (Hodges and

Dowell, 1974; Cho and Lee, 1994); but advanced aerodynamic and structural models are both required to perform

reliable analyses.

In most of the earlier studies, the simple two-dimensional quasi-steady aerodynamic models have been incorporated

in the aeroelastic models (Friedmann and Tong, 1972; Hodges and Ormiston, 1976). Most of these models are based on
e front matter r 2009 Elsevier Ltd. All rights reserved.
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Nomenclature

A aerodynamic influence coefficient matrix

a two-dimensional lift curve slope

Cd0
profile drag coefficient

B coefficient matrix relating the strength of the

wake elements in different time step

C(q) gyroscopic matrix

c(t) normal mode coordinates vector

c blade chord length

E influence of the flux density coefficient

matrix

FA aerodynamic load vector

Fec elastic and centrifugal force vector

K(q) stiffness matrix

KA radius of gyration of blade cross-section

Km mass radius of gyration of blade cross-

section

Km1
, Km2

principal mass radii of gyration

M mass matrix

m reference mass per unit length of blade

q generalized coordinate vector

q0 generalized coordinate vector about equili-

brium condition

q̂ small perturbation of generalized coordinate

vector

R blade radius

Y right eigenvector matrix

Z eigenvalue matrix

g lock number, g ¼ 3racR/m

r air density

F unsteady perturbation potential about the

free stream

F0 strength vector about equilibrium condition

F̂ small perturbation about steady equilibrium

position F0

c dimensionless time, c ¼ Ot

O angular velocity

ov,ow,of nondimensional rotating lead-lag, flap,

and torsion frequencies, respectively
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Greenberg’s theory which is used for fixed-wing type of unsteady theory (Greenberg, 1947), enhanced with a simple

momentum wake model for rotor blade applications. Since the dynamic effects of unsteady wake are very important for

aeroelastic analysis of the rotor blade, those earlier aerodynamic models which did not consider the effect of unsteady

wake and its geometry are not reliable. To consider the effect of the spiral returning wake beneath a hovering rotor,

Loewy (1957) represented a new two-dimensional blade aerodynamic model based on the modification of the analytical

Theodorsen aerodynamic theory for hovering flight conditions. Moreover, with improvements in high-speed computer

technology, more advanced numerical rotor aerodynamic models have been developed and used in aeroelastic analysis.

These models account for wake contraction, wake distortion, blade–vortex interaction, rotor–body interaction and

three-dimensional effects along the blade and tip-relief effects. Kwon et al. (1991) studied the aeroelastic behavior of

hingeless rotor blades in hover using the boundary element method (BEM) based on the panel method for three-

dimensional aerodynamic computations. In the same study, Yoo et al. (1992) applied the vortex lattice method to find

aeroelastic response and conduct a stability analysis. In these studies, the wake geometry of the rotor can be prescribed

from visualization studies of similar rotors at the same flight condition, or the known generalized equations (Landgrebe,

1972; Kocurek and Tangler, 1977). Also, it can be obtained as part of the solution from a free wake calculation (Katz

and Plotkin, 2002). Also, De Andrade and Peters (1993) performed aeroelastic analysis based on the generalized

dynamic inflow model, including a three-dimensional shed wake inflow. In addition, the aeroelastic response and

stability of multibladed hingeless rotors in hover have been investigated using the three-dimensional unsteady vortex

lattice method (Cho and Lee, 1995). These studies have shown some improvements in prediction of the lead-lag

damping values over the full range of collective pitch angles, compared with those obtained from two-dimensional

quasi-steady aerodynamic models.

Despite the fact that there are different aerodynamic solvers based on the Euler and Navier–Stokes formulations to

solve aeroelastic problems (Smith, 1996; Pomin and Wagner, 2002), BEM has been known as a powerful numerical

technique in engineering analysis. In CFD analyses and especially in heat transfer problems, BEM plays an important

and efficient role. At the beginning, this method was used only in linear problems, but it developed quickly to also

analyze nonlinear problems. One of its main advantages is the reduction of the problem dimensionality by one, since it

will be required to discretize only the boundary of the computational domain. Based on the above statements, BEM has

recently been used in many studies for unsteady flow computations and aeroelastic investigations (Chen, 2001; Eller and

Carlsson, 2003). The combination of the BEM and reduced-order modeling (ROM) gives faster solutions for unsteady

flow computations about real and complex geometries and it can be employed in aeroelastic modeling (Hall, 1994; Tang

et al., 1999; Tang and Dowell, 2001; Esfahanian and Behbahani-Nejad, 2002). The ROM technique is similar to modal

analysis, which is commonly used in the field of structural dynamics. In this regard, unsteady flow eigenmodes are used

to construct reduced-order models. Using this approach, one may construct a reduced-order model using a set of a few

dominant modes to accurately and rapidly predict the unsteady aerodynamic response over a wide range of the reduced
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frequencies. Besides, the eigenmode information provides important insights into the physics of unsteady flows. Other

methods such as proper orthogonal decomposition (POD) and balanced modes have been used for investigation of

unsteady flows (Dowell et al., 1999a, 1999b, 2006).

Proper orthogonal decomposition (POD) is an attractive alternative to the use of eigenmodes to provide a reduced-

order aeroelastic model that reduces the computational model size and cost by several orders of magnitude. This

method has been used for a wide range of dynamic system characterization and data compression applications

(Romanowski, 1996), and is more efficient for extracting eigenmodes for very high dimension systems (greater than

104). Kim (1998) has used the POD frequency domain method for a vortex lattice fluid model. Thomas et al. (1999b)

have used it for an Euler fluid model including shock wave at transonic conditions. Feng and Soulaimani (2007) used

POD method which was based on a three-field coupled full-order model to construct a reduced-order model of a three-

dimensional nonlinear aeroelasticity system with moving fluid boundaries in transonic flow.

Behbahani-Nejad et al. (2005) and Shahverdi et al. (2007) presented an accelerated and efficient modified reduced-

order modeling (MROM) approach for unsteady aerodynamic calculations based on the boundary element method.

They showed that this method is more efficient than the conventional method. In this new approach the governing

eigenvalue problem of unsteady flows is defined based on the unknown wake singularities. Thus, by constructing this

reduced-order model, the body’s quasi-static eigenmodes are removed from the eigensystem, and it is possible to obtain

satisfactory results without using the static correction technique when enough eigenmodes are used. Also, the coefficient

matrix in MROM has smaller dimension with respect to the conventional reduced-order model (CROM) [see Hall

(1994)]. Therefore, one can use the static correction technique more effectively along with this approach to obtain

satisfactory results with a lower number of eigenmodes. By incorporating this aerodynamic model into the aeroelastic

equations, a faster and more powerful solver can be built for aeroelastic stability analysis.

The main objective of the present work is to develop an efficient and powerful framework for aeroelastic response

calculations. It uses a MROM aerodynamic solver, which is based on BEM, for unsteady flow computations around a

helicopter rotor blade and the modal technique to simulate structural dynamics behavior. A geometrically nonlinear

beam model has been considered for coupled flap–lag–torsion equations of motion of a hingeless rotor blade. It allows

for moderately large deflections based on the ordering scheme that limits the magnitudes of displacements and

rotations. The nonlinear equations of motion are formulated with the aid of Galerkin’s method, based on the coupled

rotating blade mode shapes. Moreover, the paper describes how the aeroelastic model is formulated by coupling the

MROM aerodynamic equations to the structural equations of a rotor blade. Hence, using Galerkin’s method, the

system of nonlinear integro-partial-differential equations is reduced to ordinary differential equations. To solve

these equations, the nonlinear steady equilibrium deflections due to steady aerodynamic loads and centrifugal forces are

first determined through the iterative Newton–Raphson method. Then, the aeroelastic behavior of the rotor blade is

investigated by linearizing the complete equations about the equilibrium operating condition, using small perturbation

theory.

For a given hingeless blade configuration, aeroelastic stability is addressed by means of eigenanalysis and time history

results. Also, a comparison has been made using different reduced-order mode numbers. Presented numerical results

consist of steady equilibrium deflections, aeroelastic eigenvalues and time domain response about these deflections for a

two-bladed rotor. Some of the results are compared with those obtained by applying a two-dimensional quasi-steady

Greenberg’s aerodynamic theory.
2. Unsteady aerodynamic model

For the case of an incompressible, inviscid, irrotational flow, the Navier–Stokes equations can be reduced to the

classical Laplace equation (potential flow theory). Using BEM, the body surface and the wake are represented via

quadrilateral constant elements. From Green’s second identity, it can be shown that the solution to Laplace’s equation

in the flow field can be obtained from the following system of equations (Esfahanian and Behbahani-Nejad, 2002):

AFnþ1 þ BFn ¼ wnþ1, (1)

where A and B are the influence coefficient matrices of the system. The vector F is defined as

F ¼ fF̄1; F̄2; . . . ; F̄NB;DF̄1;DF̄2; . . . ;DF̄NW g, (2)

where F̄i and DF̄i are the ith unknown potential of body and wake element, respectively.

Given a prescribed time history of the body motion, Eq. (1) is simply marched in time from one time level (n) to the

next (n+1) and then the time history of the potential strengths of each element will be found. When the velocity
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potential is determined, the resulting pressure coefficient and related aerodynamic forces can be computed from

modified Bernoulli’s equation (Katz and Plotkin, 2002).

Define Fb as the vector of the unknown potential laying on the body surface along with the potential of the attached

wake element to the trailing edge (Kutta panels or elements) and Fw as the vector of the wake unknown potential

differences. Using these definitions, one can write

F ¼
Fb

Fw

( )
. (3)

Now, Eq. (1) can be written as (Shahverdi et al., 2007)

A11 A12

A21 A22

" #
Fb

Fw

( )nþ1

þ
B11 B12

B21 B22

" #
Fb

Fw

( )n

¼
wb

0

� �nþ1

, (4)

where wb denotes the vector of potential flux values (or downwash) on the body. Expressing Eq. (4) into two equations

yields

A11Fnþ1
b þ A12Fnþ1

w þ B11Fn
b þ B12Fn

w ¼ wnþ1
b , (5)

A21Fnþ1
b þ A22Fnþ1

w þ B21Fn
b þ B22Fn

w ¼ 0. (6)

Based on the wake potential difference interaction at n and n+1, it can be shown that the elements B11, B12 and A21

are zero (Shahverdi, 2006), and therefore, Eq. (5) gives

Fnþ1
b ¼ A�111 wnþ1

b � A�111 A12Fnþ1
w . (7)

Substitution of Eq. (7) into Eq. (6) gives

AnewFnþ1
w þ BnewFn

w ¼ wn
new, (8)

where

Anew ¼ A22,

Bnew ¼ B22 � B21A�111 A12,

wn
new ¼ �B21A�111 wn

b. (9)

Also, wb is defined as

wn
b ¼ �E1 � E2qn, (10)

where E1 is a vector representing the perturbation potential of the elements due to free stream velocity, and E2 is a

matrix describing the linear relationship between the motion of the airfoil and the perturbation velocity potential at the

center of each element laid on the body.

Since Eq. (8) is expressed only in terms of the wake potential differences, the corresponding eigensystem has no zero

eigenvalue, and one may construct accurate reduced-order models without using a static correction technique

(Shahverdi, 2006).
3. Structural model

The blade structural model used in the present analysis is based on Dowell and Hodges’s beam model (Hodges and

Dowell, 1974). Therefore, the blade is modeled as a geometrically nonlinear Euler–Bernoulli beam based on moderately

large deflections and small strains. Also, transverse shear deformations and torsional warping effects are neglected in

this formulation. Thus, the coupled flap–lag–torsion integro-partial-differential equations of motion are derived

analytically from Hamilton’s principle. Moreover, the blade is assumed to be attached to a fixed axis in space and

rotating at constant angular velocity about it. Fig. 1 shows the bending and torsional deflections of the blade. There,

V, W, and f denote lead-lag, flap, and torsional deflection of the beam reference line, respectively.
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Fig. 1. Schematic of rotor blade indicating orientation of elastic deformations.
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4. Aeroelastic model

After introducing the present reduced-order modeling approach, we will now describe briefly how the MROM model

can be used to construct an aeroelastic model for flutter instability calculations. Applying the standard Galerkin

method to the coupled equations of motions can give the nonlinear ordinary differential equations in the following

matrix form (Shahverdi, 2006):

M €qþ CðqÞ _qþ KðqÞ ¼ FecðqÞ þ FAðq; _q;F; _FÞ, (11)

where M, C, and K are the mass, gyroscopic damping, and stiffness matrices, respectively. Also, q is the generalized

deflection vector, and F is the aerodynamic potential vector. In addition, the term Fec denotes the summation of elastic

and centrifugal force vectors, and the vector FA represents the generalized aerodynamic forces due to the sectional

aerodynamic forces and pitching moment. These aerodynamic forces are complex nonlinear functions of the relative

air-stream velocities and blade deformations. In the present work an explicit algebraic form for these functions is

derived, which reduces computational effort and complexity [for more details see Hodges and Dowell (1974)].

To solve Eq. (11), first the nonlinear steady-state quantities such as q0 and F0 should be determined using the steady

forces. Then, by dropping all time-dependent terms, the steady equilibrium equations can be obtained. These quantities

can be determined through an iterative Newton–Raphson procedure. Consequently, for small perturbations about the

steady equilibrium solution, the time-dependent quantities are expressed in terms of the steady-state quantities and their

small unsteady perturbation elements as

q ¼ q0 þ q̂; F ¼ F0 þ F̂: (12)

Thus, linearization of the perturbation equations about the nonlinear steady equilibrium solution, q0, F0, leads to the

following equations (Shahverdi, 2006):

M €qþ Cðq0Þ
_̂qþ Kðq0Þ ¼ FA1

ðq0;F0Þq̂þ FA2
ðq0;F0ÞF̂þ FA3

_̂F: (13)

In a similar manner, the basic governing equations of the aerodynamic model, Eq. (1), can be reduced to the

following form:

AF̂
nþ1
þ BF̂

n
þ Eq̂nþ1

¼ 0, (14)

where E is a matrix describing the linear relationship between the blade motion and perturbation velocity potential at

each collocation point laid on the blade surface. Since the aerodynamic equation has been defined in a discrete time

domain, the combination of the aerodynamic and structural equations (Eq. (13)), can also be written in this domain.

Writing the equation at time interval (n+1/2)Dt and employing the central difference approximation lead to

ðD2 þ F1Þq̂
nþ1
þ ðD1 þ FA1

Þq̂n
þ FA2

F̂
nþ1
þ FA3

F̂
n
¼ 0, (15)

where D2 and D1 are constant coefficient matrices defined in Shahverdi (2006).

Combining Eqs. (14) and (15) in matrix form leads to

A E

FA2
ðD2 þ FA1

Þ

" #
F̂

q̂

( )nþ1

þ
B 0

FA3
ðD1 þ FA1

Þ

" #
F̂

q̂

( )n

¼ 0. (16)



ARTICLE IN PRESS
H. Shahverdi et al. / Journal of Fluids and Structures 25 (2009) 1243–12571248
For aeroelastic stability analysis, one must compute the eigenvalues of Eq. (16) in different flight conditions and

blade configurations. Also, for aeroelastic response computations in the time domain, we can define the time derivative

quantities as follows:

_qðcþ DcÞ ¼
qðcþ DcÞ � qðcÞ

Dc
¼ y1ðcþ DcÞ (17)

and

_̂Fðcþ DcÞ ¼
F̂ðcþ DcÞ � F̂ðcÞ

Dc
¼ y2ðcþ DcÞ. (18)

Thus, putting Eqs. (17) and (18) into Eq. (13) gives

M
y1ðcþ DcÞ � y1ðcÞ

Dc
þ Cy1ðcþ DcÞ þ Kqðcþ DcÞ � F A1

q̂þ FA2
F̂þ FA3

y2ðcþ DcÞ ¼ 0, (19)

where c ¼ Ot is the dimensionless time.

Using eigenmodes of Eq. (8) along with orthogonality properties, this equation becomes (Shahverdi, 2006):

cðcþ DcÞ þ Y T AnewGðE1 þ E2qðcþ DcÞÞ þ ZcðcÞ þ Y T G1ðE1 þ E2qðcÞÞ ¼ 0, (20)

where c is the vector of normal mode coordinates, Y is a matrix with rows that are the left eigenvectors, and Z is a

diagonal matrix containing the eigenvalues of the system. Also, G and G1 are defined as

G ¼ ðAnew þ BnewÞ
�1B21A�111 ; G1 ¼ BnewG � B21A�111 . (21)

Eq. (20) represents the complete aerodynamic model, along with the static correction technique [for details, see

Shahverdi (2006)]. The governing system of equations, Eq. (17) to Eq. (20), can be solved numerically in the time

domain for the proper initial conditions.
5. Solution procedure

In computing stability results, some simplifications are assumed in this study. For example, mass and stiffness

properties are considered to be constant. Also, aerodynamic, elastic and mass centers are assumed to be coincident.

To obtain steady equilibrium conditions, first the aerodynamic loads must be determined. Hence, the blade is

assumed to be undeformed initially, and the free–wake model is employed to yield the wake geometry. After computing

the influence coefficients in Eq. (1), the potential strength distribution on the blade surface is determined. Then, the

pressure distribution and the resulting forces and moments are obtained. Applying the Newton–Raphson iteration

procedure to the steady equations of motion yields the steady blade deflections. Next, using the obtained deflections the

blade geometry is updated. Since the aerodynamic influence coefficients depend on the geometry of the blade, the new

set of the influence coefficients in A and the right-hand side of Eq. (1) are calculated from the deformed blade geometry.

Thus, a new set of aerodynamic equations is obtained. However, the coefficient matrix B in Eq. (1) does not change

because it depends on Kelvin’s theorem, which relates the strength of wake potentials from one time level (n) to the next

(n+1). Then the new aerodynamic loads are found for the current state of blade deformation. This iterative process is

repeated until satisfactory convergence is obtained under equilibrium conditions. It should be noted that the geometry

of the near wake attached to the blade is assumed to follow the deflections of the blade trailing edge. On the other hand,

the effect of blade deflections on the far wake geometry is assumed to be negligible because the magnitude of the

deflections is small compared to the distance between the far wake and the blade (Kwon et al., 1991).

After this stage, the linearized equations of motions (Eq. (13)), are obtained using small perturbation theory. For the

time integration of Eqs. (17)–(20), the initial perturbation values, q̂ and f̂, are taken to be 10% of the steady equilibrium

conditions.

In the case of aeroelastic computations, the blade surface geometry and the corner points of each element will change

from one time step to the next. Thus, the aerodynamic influence coefficients must be recomputed for each time step.

Since the blade deflections are very small under the assumed small perturbation deflections, these coefficients are

computed only once in each equilibrium condition. Therefore, the time history response of the blade can be obtained

easily.
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6. Results and discussion

In the present study, a rotor blade with an untwisted rectangular platform is used to investigate the effects of the

three-dimensional tip loss effect and unsteady wake dynamics on the equilibrium deflections, aeroelastic eigenvalues,

and blade dynamic response. The equilibrium deflections and lead-lag damping are also compared with those obtained

from two-dimensional aerodynamic strip theory (Hodges and Ormiston, 1976).

Initially, to verify the aerodynamic load computation capability of the present BEM code, unsteady pressure

coefficients at two sections in the spanwise direction are presented for the untwisted rectangular blade of a two-bladed

rotor (with NACA0012 airfoil section, pitch angle 81 and aspect ratio 6) in hovering flight conditions. These are

compared in Figs. 2 and 3 with the experimental results of Caradonna and Tung (1981). The results show good

agreement between experiment and present study. Also, the wake geometry is obtained as a part of solution from free-

wake calculations shown in Fig. 4. In this study, the body surface of each blade is discretized by 28 elements in the

chordwise and 10 elements in the spanwise directions. Moreover, the blade root cutout is considered to be 10% of the

blade radius.
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Fig. 2. Pressure distribution at section r/R ¼ 0.68; experimental data from Caradonna and Tung (1981).
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Fig. 3. Pressure distribution at section r/R ¼ 0.80; experimental data from Caradonna and Tung (1981).
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Fig. 4. Obtained free wake model of a two-bladed rotor.

Table 1

Two-bladed rotor parameters.

ov 0.7, 1.5

ow 1.15

of 2.5, 5.0, 8.0

(KA/Km)
2 1.5

Km/R 0.025

Km1
=Km2

0.0

g ¼ (3rNacR/m) 5

c/R p/40
Cd0

=a 0.01/2p
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The configuration and operating condition parameters that are needed in the present aeroelastic study are given in

Table 1. In order to compute aerodynamic loads, the surface of the blade is discretized similarly to the above presented

model. Also, the wake is considered up to two blade revolutions (Katz and Maskew, 1988). The three-dimensional wake

geometry is derived using the free wake methodology (Katz and Plotkin, 2002).

First, the equilibrium solution for the two-bladed soft in-plane rotor (ov ¼ 0.7, ow ¼ 1.15, and of ¼ 5) is obtained.

Then, the tip flap and lead-lag deflections are computed and normalized with respect to the blade radius, while the tip

torsional deflection is determined in degrees.

Figs. 5–7 show the tip flap, lead-lag, and torsion deformations, respectively. As indicated in these figures, the

obtained steady-state deflections using the three-dimensional aerodynamic model (BEM) are lower than those obtained

using two-dimensional theory, because of the three-dimensional tip loss and unsteady wake effect. Also, it is observed

that there is a good agreement between the predicted lead-lag and flap deflections of the two aerodynamic models at low

collective pitch angles. This agreement is due to the use of the same profile drag coefficient in both aerodynamic models.

However, the difference between the results at high collective pitch angles appears since the two-dimensional

aerodynamic model overestimates induced drag (Cho and Lee, 1995). Also, it is shown that the torsional deflections

predicted by the present method are about two-thirds of those given by the two-dimensional theory. This is due to the

three-dimensional tip-relief effect which produces a high nose-up pitching moment and thus reduces the magnitude of

the negative pitch deflections (Kwon et al., 1991).

Next, the predicted lead-lag dampings of a two-bladed stiff in-plane rotor (ov ¼ 1.5, ow ¼ 1.15, and of ¼ 5) are

shown in Fig. 8 at various collective pitch angles, and the results are compared with those obtained using two-

dimensional aerodynamic theory. These results are determined via the eigenvalue analysis (IMSL Lib., 1980). Since the
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Fig. 5. Tip flap deflection at equilibrium position.
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Fig. 6. Tip lead–lag deflection at equilibrium position.
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Fig. 7. Tip torsion deflection at equilibrium position.

H. Shahverdi et al. / Journal of Fluids and Structures 25 (2009) 1243–1257 1251



ARTICLE IN PRESS

Collective pitch angle (deg)

N
or

m
al

iz
ed

 le
ad

-la
g 

da
m

pi
ng

0 5 10 15
-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

Present method
2-D Theory

Fig. 8. Normalized lead–lag damping of a stiff in-plane rotor.
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same structural model without any structural damping is used in both models, the difference between results can be

attributed to three-dimensional tip loss and unsteady wake dynamics occurring especially at high collective angles. At

very low collective pitch angles, the aerodynamic force is mostly affected by the viscous profile drag; therefore, the same

damping is predicted by both aerodynamic models.

Also, Figs. 9 and 10 show the real and imaginary parts of the aeroelastic eigenvalues of the same two-bladed rotor

with given rotating frequencies as ov ¼ 1.2, ow ¼ 1.15, and of ¼ 2.5 for various collective pitch angles. These results

reveal that flutter occurs at a collective pitch angle of 111. This phenomenon can also be observed from time marching

solution. Hence, the time histories of lead-lag, flap and torsion perturbed motions of this rotor are computed at two

different collective pitch angles. These results are obtained by using both the complete and MROM aeroelastic models.

In addition, the effect of the number of aerodynamic eigenmodes on the obtained results is investigated. Here, the

dimensionless time step is assumed to be 0.251.

The time histories of the blade response at a collective pitch angle of 111 for three different perturbed motions are

shown in Figs. 11–13. From these results, it is observed that the blade is neutrally stable. Also, these perturbed motions

are calculated at a collective pitch angle of 131 using the complete aeroelastic model (direct method) and the results are

shown in Figs. 14–16. The results show that the amplitude of each one of the perturbed motions increases rapidly with
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time, which means that the aeroelastic response is unstable. The effect of the number of wake eigenmodes, which are

used in the MROM aeroelastic model, is investigated here by considering 4 and 20 eigenmodes in the computations. As

shown in Figs. 14–16, MROM with 20 eigenmodes gives satisfactory results when compared with the complete

aeroelastic model.

For further verification of the results of the current work, a correlation study with experimental results is also

performed. In this regard the values of configuration and operating condition parameters were taken from the

experimental model that identified by Sharpe (1986) (blade set 2). The variations of the lead-lag damping of a stiff in-

plane blade over the identified range of the collective pitch angle are shown in Fig. 17. The results demonstrate an

improved ability of the present method to accurately determine the lead-lag damping with respect to the method

associated with 2-D aerodynamic model. Above 41 the difference between the results of the present method and

experiment increases as the value of the pitch angle increases. According to Sharpe (1986) and Kwon et al. (1991) this

difference is related to the nonlinearity of the aerodynamic coefficients at the high collective pitch angles. However, the

results associated with the present method show good agreement with the experimental results.

Finally, to show the efficiency of MROM using BEM in unsteady flow analysis over complex configuration, the last

test case presented above is considered here. As a metric for the efficiency analysis, CPU times for the direct method and

MROM with static correction technique along with 20 and 40 eigenmodes are compared (Table 2). The results are

based on numerical computations using a P4-3200MHz with 2-GB RAM. The results reveal that the present method

can analyze the same problem significantly more efficiently than the direct method. The efficiency of the present method
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Table 2

CPU time comparison between direct and present method.

Solution method Number of eigenmodes Time

Direct – 1250, 3100

MROM 20 90, 3000

MROM 4 20, 1600
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is due to the fact that the resulting MROM system of equations has a smaller dimension than the direct method. The

maximum size of the coefficient matrix in the MROM aeroelastic model is equal to the number of structural degrees of

freedom and aerodynamic eigenmodes, whereas in the complete aeroelastic model this size is equal to the number of

structural degrees of freedom and number of aerodynamic elements that lay on the body surface and its wake.

Therefore, MROM will be more efficient when the ratio of the number of body elements to the number of wake

elements is increased, since it is based only on the wake elements. However, the application of the MROM without the

static correction technique is more efficient than with static correction because there is no need to compute the quasi-

steady solution in each time step when enough eigenmodes are used (Shahverdi, 2006).
7. Conclusion

Aeroelastic analysis of a simple helicopter hingeless blade has been performed to exemplify the usage of the three-

dimensional boundary element method that accounts for the tip loss effect and unsteady wake inflow dynamics. The

aeroelastic equations of the rotor blade were derived through Galerkin’s method by considering large deflections and

small strains. To eliminate the nonlinearity of the system of equations, small perturbation theory was used to linearize

the equations about equilibrium. To increase the computational efficiency of the aeroelastic solver, the MROM

methodology can be incorporated into the aeroelastic equations with a few eigenmodes. Thus, as a novel feature of the

present work, an efficient reduced-order aerodynamic approach has been adopted for aeroelastic analysis of a helicopter

rotor blade. In the present method, the numerical eigensystem is constructed only by the wake potentials, which results

in a smaller dimension of the corresponding eigensystem. It can be concluded that the present method is

computationally more efficient than the complete aeroelastic model. The steady equilibrium deflections and lead-lag

damping of a two-bladed rotor are compared with those obtained from the two-dimensional aerodynamic theory. The

results show that the three-dimensional aerodynamic effects greatly affect the equilibrium and blade aeroelastic

stability, especially in high collective pitch angles.

The aeroelastic stability analysis based on the 3-D unsteady aerodynamic model yields more accurate lead-lag

damping values of the two-bladed rotor compared to those obtained from a 2-D aerodynamic model.

The results show that the MROM aeroelastic model with a sufficient number of eigenmodes can produce satisfactory

results and save considerable computational time. Moreover, it can be concluded that this efficiency will be more

evident when the present technique is employed for unsteady flow computations around a complex configuration,

including rotor–body interaction cases where a large number of aeroelastic calculations need to be performed.
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